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1
SYSTEM AND METHOD FOR PROVIDING
DYNAMIC CLOCK AND VOLTAGE SCALING
(DCVS) AWARE INTERPROCESSOR
COMMUNICATION

DESCRIPTION OF THE RELATED ART

Devices with a processor that communicate with other
devices through wireless signals, including portable comput-
ing devices (PCDs), are ubiquitous. These devices may
include mobile telephones, portable digital assistants
(PDAs), portable game consoles, palmtop computers, and
other portable electronic devices. In addition to the primary
function of these devices, many include peripheral functions.
For example, a mobile or cellular telephone may include the
primary function of enabling and supporting telephone calls
and the peripheral functions of a still camera, a video camera,
global positioning system (GPS) navigation, web browsing,
viewing videos, playing games, sending and receiving
emails, sending and receiving text messages, push-to-talk
capabilities, etc.

Modern PCDs typically include a system-on-a-chip (SoC)
comprising one or more cores (e.g., central processing unit(s)
(CPUs), video decoder, graphics processing unit(s) (GPU),
modem processor, digital signal processor(s) (DSPs), etc.) for
controlling or performing varying functions of the PCD. The
presence of an increasing number of cores and/or CPUs can
be problematic in the PCD setting as operating each core/
CPU increases the power consumption on the PCD, reducing
battery life. For example, as the functionality of PCDs
increases, conventional SoC processors may exchange sig-
nificant amounts of data between themselves as part of
executing typical use cases (video playback for example)
within the PCD. As content size grows larger every few
months (like 1080P for video clips), these communication
mechanisms can become a significant part of CPU load,
increasing the power consumption. The communications
mechanisms forming the CPU load can be in the form of
remote procedure calls, shared memory calls, and other cus-
tomized communication mechanisms.

In an effort to reduce power consumption, CPUs may
implement some form of Dynamic Clock and Voltage Scaling
(DCVY) algorithm running on them to minimize power con-
sumption. A majority of these DCVS algorithms run based on
the CPU load computed periodically in order to determine the
best frequency for the CPU. One problem with these kinds of
SoCs is when such a CPU receives multiple messages/inter-
rupts at random times from a source (such as another CPU).
Such repeated messages/interrupts may cause DCVS algo-
rithm on the CPU receiving the messages/interrupts to react to
this additional load caused by the messages/interrupts and
take the CPU to its high/highest frequency which can signifi-
cantly increase power consumption, contrary to the purpose
of the DCVS algorithm. This increased power consumption
can be especially problematic for PCDs, such as a mobile
phone, running on a battery.

Thus, there is a need for improved systems and methods to
minimize these sudden increases in clock frequency that can
be caused by receiving random and sudden messages/inter-
rupts at a CPU implementing a DCVS algorithm.

SUMMARY OF THE DISCLOSURE

Systems and methods are disclosed that allow for Dynamic
Clock and Voltage Scaling (DCVS) aware interprocessor
communications among processors such as those used in or
with a portable computing device (“PCD”). During operation
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of the PCD at least one data packet is received at a first
processing component. Additionally, the first processing
component also receives workload information about a sec-
ond processing component operating under dynamic clock
and voltage scaling (DCVS). A determination is made, based
at least in part on the received workload information, whether
to send the at least one data packet from the first processing
component to the second processing component or to a buffer.

One example embodiment is a PCD including a first pro-
cessing component, where the first processing component
configured to receive at least one data packet. The first pro-
cessing component is in communication with a second pro-
cessing component that is configured to operate under
dynamic clock and voltage scaling (DCVS). A buffer is in
communication with the first processing component and the
second processing component. A counter is in communica-
tion with the second processing component, and the counter is
configured to obtain workload information about the second
processing component. The PCD also includes packet send-
ing logic in communication with the first processing compo-
nent and the counter. The packet sending logic is configured
to receive the workload information from the counter and
determine based at least in part on the received workload
information whether to cause the at least one data packetto be
sent to the second processing component or to the buffer.

Another example embodiment is a computer program
product comprising a non-transitory computer usable
medium having a computer readable program code embodied
therein, said computer readable program code adapted to be
executed to implement a method for a method for interpro-
cessor communication in a portable computing device (PCD).
The implemented method comprises: receiving at least one
data packet at a first processing component; receiving at the
first processing component workload information about a
second processing component operating under dynamic
clock and voltage scaling (DCVS; and determining based at
least in part on the received workload information whether to
send the at least one data packet from the first processing
component to the second processing component or to a buffer.

Yet another example embodiment is a computer system for
interprocessor communication in a portable computing
device (PCD). The computer system comprising: means for
receiving at least one data packet at a first processing com-
ponent; means for receiving at the first processing component
workload information about a second processing component
operating under dynamic clock and voltage scaling (DCVS);
means for determining based at least in part on the received
workload information whether to send the at least one data
packet from the first processing component to the second
processing component or to a buffer.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference numerals refer to like parts
throughout the various views unless otherwise indicated. For
reference numerals with letter character designations such as
“102A” or “102B”, the letter character designations may
differentiate two like parts or elements present in the same
figure. Letter character designations for reference numerals
may be omitted when it is intended that a reference numeral to
encompass all parts having the same reference numeral in all
figures.

FIG. 1 is a block diagram of an example embodiment of a
portable computing device (PCD) in which the present inven-
tion may be implemented;



US 9,244,747 B2

3

FIG. 2A is a graph illustrating an exemplary theoretical
load over a period of time for a processing unit that may be
implemented in the PCD embodiment illustrated in FIG. 1;

FIG. 2B is a graph illustrating the an exemplary frequency
of'the processing unit under the theoretical load illustrated in
FIG. 24,

FIG. 3A is a graph illustrating another exemplary theoreti-
calload over a period of time for a processing unit that may be
implemented in the PCD embodiment illustrated in FIG. 1;

FIG. 3B is a graph illustrating the an exemplary frequency
of'the processing unit under the theoretical load illustrated in
FIG. 3A,;

FIG. 4 is ablock diagram showing an exemplary system for
supporting dynamic voltage and voltage scaling (DCVS)
aware interprocessor communications in a PCD;

FIG. 5 is a block diagram showing another exemplary
system for supporting dynamic voltage and voltage scaling
(DCVS) aware interprocessor communications in a PCD;

FIG. 6A is a flowchart describing an exemplary embodi-
ment of a method for providing dynamic clock and voltage
scaling (DCVS) aware interprocessor communications in a
PCD; and

FIG. 6B illustrates example components capable of per-
forming the method illustrated in FIG. 6A.

DETAILED DESCRIPTION

The word “exemplary” is used herein to mean “serving as
an example, instance, or illustration.” Any aspect described
herein as “exemplary” is not necessarily to be construed as
preferred or advantageous over other aspects.

In this description, the term “application” may also include
files having executable content, such as: object code, scripts,
byte code, markup language files, and patches. In addition, an
“application” referred to herein, may also include files that
are not executable in nature, such as documents that may need
to be opened or other data files that need to be accessed.

The term “content” may also include files having execut-
able content, such as: object code, scripts, byte code, markup
language files, and patches. In addition, “content” referred to
herein, may also include files that are not executable in nature,
such as documents that may need to be opened or other data
files or data values that need to be accessed.

As used in this description, the terms “component,” “data-
base,” “module,” “system,” and the like are intended to refer
to a computer-related entity, either hardware, firmware, a
combination of hardware and software, software, or software
in execution. For example, a component may be, but is not
limited to being, a process running on a processor, a proces-
sor, an object, an executable, a thread of execution, a program,
and/or a computer. By way of illustration, both an application
running on a computing device and the computing device
may be a component. One or more components may reside
within a process and/or thread of execution, and a component
may be localized on one computer and/or distributed between
two or more computers. In addition, these components may
execute from various computer-readable media having vari-
ous data structures stored thereon. The components may com-
municate by way of local and/or remote processes such as in
accordance with a signal having one or more data packets
(e.g., data from one component interacting with another com-
ponent in a local system, distributed system, and/or across a
network such as the Internet with other systems by way of the
signal).

In this description, the term “portable computing device”
(“PCD”) is used to describe any device operating on a limited
capacity rechargeable power source, such as a battery and/or
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capacitor. Although PCDs with rechargeable power sources
have been in use for decades, technological advances in
rechargeable batteries coupled with the advent of third gen-
eration (“3G”) and fourth generation (“4G”) wireless tech-
nology have enabled numerous PCDs with multiple capabili-
ties. Therefore, a PCD may be a cellular telephone, a satellite
telephone, a pager, a PDA, a smartphone, a navigation device,
a smartbook or reader, a media player, a combination of the
aforementioned devices, a laptop or tablet computer with a
wireless connection, among others.

In this description, the terms “central processing unit
(“CPU”),” “digital signal processor (“DSP”),” “graphics pro-
cessing unit (“GPU”),” “chip,” “video codec,” “system bus,”
“image processor,” and “media display processor (“MDP”)”
are non-limiting examples of processing components that are
controllable through dynamic clock and voltage scaling
(“DCVS”) techniques, and which may benefit from the
present systems and methods. These terms for processing
components are used interchangeably except when otherwise
indicated. Moreover, as discussed below, any of the above or
their equivalents may be implemented in, or comprised of,
one or more distinct processing components generally
referred to herein as “core(s)” and/or “sub-core(s).”

In this description, the terms “workload,” “process load,”
“process workload,” and “graphical workload” are used inter-
changeably and generally directed toward the processing bur-
den, or percentage of processing burden, that is associated
with, or may be assigned to, a given processing component in
a given embodiment. Additionally, the related terms “frame,”
“codeblock” and “block of code” are used interchangeably to
refer to a portion or segment of a given workload. For
instance, a graphical workload may be comprised of a series
of frames, as would be understood by one of ordinary skill in
the art of video processing. Further to that which is defined
above, a “processing component” or the like may be, but is not
limited to being, a central processing unit, a graphical pro-
cessing unit, a core, amain core, a sub-core, a processing area,
a hardware engine, etc. or any component residing within, or
external to, an integrated circuit within a portable computing
device.

One of ordinary skill in the art will recognize that the term
“MIPS” represents the number of millions of instructions per
second a processor is able to process at a given power fre-
quency. In this description, the term is used as a general unit
of measure to indicate relative levels of processor perfor-
mance in the exemplary embodiments and will not be con-
strued to suggest that any given embodiment falling within
the scope of this disclosure must, or must not, include a
processor having any specific Dhrystone rating or processing
capacity. Additionally, as would be understood by one of
ordinary skill in the art, a processor’s MIPS setting directly
correlates with the power, frequency, or operating frequency,
being supplied to the processor.

The present systems and methods for Dynamic Clock and
Voltage Scaling (DCVS) aware interprocessor communica-
tions provide a cost effective ability to dynamically and adap-
tively determine whether to send a message, interrupt, remote
procedure call, etc. from one core, central processing unit
(CPU), or processing component (the “sending processing
component”) to another component, core or CPU (the
“receiving processing component), where the receiving pro-
cessing component implements a DCVS algorithm or logic.

In the present systems and methods, the when a sending
processing component has data or data packets to communi-
cate to the receiving processing component, the sending pro-
cessing component does not automatically send the data or
data packets. Instead, the sending processing component, or
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another component in communication with the sending pro-
cessing component, determines whether or not to immedi-
ately send the data or data packets based at least in part on the
current workload on the receiving processing component
and/or whether or not immediately sending the data or data
packets will cause increased power consumption at the
receiving processing component (such as by operating at a
higher frequency). The present systems and methods allow
for reduced power consumption and improved battery life in
PCDs with multi-cores or multi-CPUs implementing DCVS
algorithms or logic.

During operation of the PCD at least one data packet is
received at a first processing component. Additionally, the
first processing component also receives workload informa-
tion about a second processing component operating under
dynamic clock and voltage scaling (DCVS). A determination
is made whether to send the at least one data packet from the
first processing component to the second processing compo-
nent or to a buffer. The determination whether to send the at
least one data packet to the second processing component is
made based at least in part on the received workload infor-
mation about the second processing component, and may
include a determination of whether an active workload of the
second processing component is above a threshold level.
Additionally, the determination whether to send the at least
one data packet from the first processing component to the
second operation component or to a buffer may also be based
in part on operational parameters. Exemplary operational
parameters may include: the importance of the information
contained within the data packet(s); the nature of the destina-
tion processing component to which the data is being sent (i.e.
an active application or GPU); quality of service (“QoS”); the
availability of buffers; the power “cost” of buffering the data;
etc.

One example embodiment is a PCD including a first pro-
cessing component, where the first processing component
configured to receive at least one data packet. The first pro-
cessing component is in communication with a second pro-
cessing component that is configured to operate under
dynamic clock and voltage scaling (DCVS). A buffer is in
communication with the first processing component and the
second processing component. A counter is in communica-
tion with the second processing component, and the counter is
configured to obtain workload information about the second
processing component. The PCD also includes packet send-
ing logic in communication with the first processing compo-
nent and the counter. The packet sending logic is configured
to receive the workload information from the counter and
determine based at least in part on the received workload
information whether to cause the at least one data packet to be
sent to the second processing component or to the buffer.

This ability to determine whether or not to send data pack-
ets from one processing component to a second processing
component implementing DCVS based on the workload on
the second processing component allows for improved power
management of the PCD’s processing components. One
exemplary advantage is the ability to avoid sending interpro-
cessor communications when the second processing compo-
nent is busy. In such circumstances the second processing
component may be operating at a level where the increased
workload from the interprocessor communication would
cause the DCVS of the second processing component to
increase the power consumption, such as by operating at a
higher frequency. If it is determined that the second process-
ing component is busy and/or operating above a threshold
level, the data from the first processing component may be
deferred if possible (such as by buffering) until the second
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6

processing component is less busy. In this manner, the present
systems and methods avoid a significant and often unneces-
sary increase in power consumption from interprocessor
communications.

Although described with particular reference to operation
within a PCD, the described systems and methods for
dynamic voltage and voltage scaling (DCVS) aware interpro-
cessor communications are applicable to any system with a
processor, or processing subsystem where it is desirable to
conserve power consumption, enhance performance, or
improve quality of service. Stated another way, the described
systems and methods may be implemented to provide
dynamic voltage and voltage scaling (DCVS) aware interpro-
cessor communications in a system other than in a portable
device.

The system for dynamic voltage and voltage scaling
(DCVS) aware interprocessor communications described
herein, or portions of the system, may be implemented in
hardware or software. If implemented in hardware, the
devices can include any, or a combination of, the following
technologies, which are all well known in the art: discrete
electronic components, an integrated circuit, an application-
specific integrated circuit having appropriately configured
semiconductor devices and resistive elements, etc. Any of
these hardware devices, whether acting or alone, with other
devices, or other components such as a memory may also
form or comprise components or means for performing vari-
ous operations or steps of the disclosed methods.

When a PCD or other system described herein is imple-
mented, or partially implemented, in software, the software
portion can be used to receive at least one data packet at a first
processing component, receive at the first processing compo-
nent workload information about a second processing com-
ponent operating under dynamic clock and voltage scaling
(DCVS), or determine based at least in part on the received
workload information whether to send the at least one data
packet from the first processing component to the second
processing component or to a buffer.

The software and data used in representing various ele-
ments can be stored in a memory and executed by a suitable
instruction execution system (microprocessor). The software
may comprise an ordered listing of executable instructions for
implementing logical functions, and can be embodied in any
“processor-readable medium” for use by or in connection
with an instruction execution system, apparatus, or device,
such as a single or multiple-core processor or processor-
containing system. Such systems will generally access the
instructions from the instruction execution system, apparatus,
or device and execute the instructions.

FIG. 1 is a diagram showing a wireless device 110 com-
municating with a wireless communication system 100 in
which embodiments of the present disclosure may be
employed. The Each or any of the above systems may be
generically referred to herein with the label “wireless com-
munications protocol” or a “wireless communications tech-
nology.”

FIG. 1 is a block diagram of an exemplary, non-limiting
aspect of a PCD 100 that may implement the present systems
and methods in the form of a wireless telephone capable of
communicating with one or more wireless communication
system. Such wireless communication system may be a
broadband wireless communication system, including a Long
Term Evolution (LTE) system, a Code Division Multiple
Access (CDMA) system, a Frequency Division Multiple
Access (FDMA) system, a Global System for Mobile Com-
munications (GSM) system, a wireless local area network
(WLAN) system, some other wireless system, or a combina-
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tion of any of these. A CDMA system may implement Wide-
band CDMA (WCDMA), CDMA 1x, Evolution-Data Opti-
mized (EVDO), Time Division Synchronous CDMA (TD-
SCDMA), or some other version of CDMA.

As shown, the PCD 100 includes an on-chip system 102
that includes a heterogeneous multi-core central processing
unit (“CPU”) 110 and an analog signal processor 126 that are
coupled together. The CPU 110 may comprise a zeroth core
222, afirst core 224, and an Nth core 230 as understood by one
of ordinary skill in the art. Further, instead of a CPU 110, a
digital signal processor (“DSP”) may also be employed as
understood by one of ordinary skill in the art. Moreover, as is
understood in the art of heterogeneous multi-core processors,
each of the cores 222, 224, 230 may process workloads at
different efficiencies under similar operating conditions.
Each of the cores 222, 224, 230 may control one or more
function of the PCD 100. For example, the first core 224 may
be a graphics processing unit (GPU) for controlling graphics
in the PCD 100. Such GPU/first core 224 may further include
drivers and/or other components necessary to control the
graphics in the PCD 100, including controlling communica-
tions between the GPU core 326 and memory 112 (including
buffers). For another example, a different core such as the Nth
core 230 may control the camera 148 and such core 230 may
further include drivers and/or other components necessary to
control the camera 148, including communications between
the core 230 and memory 112 (including buffers).

In some embodiments the PCD 100 may include a proces-
sor intercommunication (“PI”) module 101 in communica-
tion with the multicore CPU 110 and/or one or more of the
cores 222, 224, 230. The PI module 101 may operate to
control some or all of the communications between the pro-
cessing units/cores 222, 224, 230 as described below. The PI
module 101 may comprise software which is executed by the
multicore CPU 110. However, the Pl module 101 may also be
formed from hardware and/or firmware without departing
from the scope of the invention. In other implementations, the
PCD 100 may not include a separate PI module 101, but
instead one or more of the cores 222, 224, 230 may have
modules, components, logic, software, or firmware to control
the communications with the other processing units/cores
222,224, 230.

Asillustrated in FIG. 1, a display controller 128 and atouch
screen controller 130 are coupled to the multicore CPU 110.
In turn, a display/touchscreen 132, external to the on-chip
system 102, is coupled to the display controller 128 and the
touch screen controller 130.

The PCD 100 of FIG. 1 may further include a video
encoder 134, e.g., a phase alternating line (PAL) encoder, a
sequential couleur a memoire (SECAM) encoder, or a
national television system(s) committee (NTSC) encoder, or
any other type of video decoder 134 coupled to the multicore
CPU 110. Further, a video amplifier 136 is coupled to the
video encoder 134 and the display/touchscreen 132. A video
port 138 is coupled to the video amplifier 136. As depicted in
FIG. 1, auniversal serial bus (USB) controller 140 is coupled
to the multicore CPU 110. Also, a USB port 142 is coupled to
the USB controller 140. A memory 112 and a subscriber
identity module (SIM) card 146 may also be coupled to the
multicore CPU 110. In other embodiments, multiple SIM
cards 146 may be implemented.

A digital camera 148 may be coupled to the multicore CPU
110. As discussed above, in such embodiments, the digital
camera 148 may be controlled by one of the cores of the
multicore CPU 110. In an exemplary aspect, the digital cam-
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era 148 is a charge-coupled device (CCD) camera or a
complementary metal-oxide semiconductor (CMOS) cam-
era.

As further illustrated in FIG. 1, a stereo audio CODEC 150
may be coupled to the multicore CPU 110. Moreover, an
audio amplifier 152 may be coupled to the stereo audio
CODEC 150. In an exemplary aspect, a first stereo speaker
154 and a second stereo speaker 156 are coupled to the audio
amplifier 152. FIG. 1 shows that a microphone amplifier 158
may be also coupled to the stereo audio CODEC 150. Addi-
tionally, a microphone 160 may be coupled to the microphone
amplifier 158. In a particular aspect, a frequency modulation
(FM) radio tuner 162 may be coupled to the stereo audio
CODEC 150. Also, a FM antenna 164 is coupled to the FM
radio tuner 162. Further, stereo headphones 166 may be
coupled to the stereo audio CODEC 150.

FIG. 1 further indicates that a modem device/radio fre-
quency (“RF”) transceiver 168 may be coupled to the multi-
core CPU 110. The modem device 168 may support one or
more of the wireless communications protocols, such as
GSM, CDMA, W-CDMA, TDSCDMA, LTE, and variations
of LTE such as, but not limited to, FDB/LTE and PDD/LTE
wireless protocols. Additionally, there may be multiple
modem devices 168, and in such embodiments, different
modem devices 168 may support come or all of the wireless
communication protocols and/or technologies listed above.

In some implementations the modem device 168 may be
further comprised of various components, including a sepa-
rate processor, memory, and/or RF transceiver. In other
implementations the modem device 168 may simply be an RF
transceiver. Further, the modem device 168 may be incorpo-
rated in an integrated circuit. That is, the components com-
prising the modem device 168 may be a full solution in a chip.
Additionally, various components comprising the modem
device 168 may also be coupled to the multicore CPU 110. An
RF switch 170 may be coupled to the modem device 168 and
an RF antenna 172. In various embodiments, there may be
multiple RF antennas 172, and each such RF antenna 172 may
be coupled to the modem device 168 through an RF switch
170.

As shown in FIG. 1, a keypad 174 may be coupled to the
multicore CPU 110 either directly, or through the analog
signal processor 126. Also, a mono headset with a micro-
phone 176 may be coupled to the multicore CPU 110 and or
analog signal processor 126. Further, a vibrator device 178
may also be coupled to the multicore CPU 110 and/or analog
signal processor 126. FIG. 1 also shows that a power supply
188 may be coupled to the on-chip system 102, and in some
implementations the power supply 188 is coupled via the
USB controller 140. In a particular aspect, the power supply
188 is a direct current (DC) power supply that provides power
to the various components of the PCD 100 that require power.
Further, in a particular aspect, the power supply 188 may be a
rechargeable DC battery or a DC power supply that is derived
from an alternating current (AC) to DC transformer that is
connected to an AC power source.

The multicore CPU 110 may also be coupled to one or
more internal, on-chip thermal sensors 157A as well as one or
more external, off-chip thermal sensors 157B. The on-chip
thermal sensors 157A may comprise one or more propor-
tional to absolute temperature (“PTAT”) temperature sensors
that are based on vertical PNP structure and are usually dedi-
cated to complementary metal oxide semiconductor
(“CMOS”) very large-scale integration (“VLSI”) circuits.
The off-chip thermal sensors 157B may comprise one or more
thermistors. The thermal sensors 157 may produce a voltage
drop that is converted to digital signals with an analog-to-
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digital converter (“ADC”) controller 103. However, other
types of thermal sensors 157 may be employed without
departing from the scope of the invention.

FIG. 1 further indicates that the PCD 110 may also include
anetwork card 114 that may be used to access a data network,
e.g., a local area network, a personal area network, or any
other network. The network card 114 may be a Bluetooth
network card, a WiFi network card, a personal area network
(PAN) card, or any other network card well known in the art.
Further, the network card 114 may be incorporated in an
integrated circuit. That is, the network card 114 may be a full
solution in a chip, and may not be a separate network card
114.

As depicted in FIG. 1, the display/touchscreen 132, the
video port 138, the USB port 142, the camera 148, the first
stereo speaker 154, the second stereo speaker 156, the micro-
phone 160, the FM antenna 164, the stereo headphones 166,
the RF switch 170, the RF antenna 172, the keypad 174, the
mono headset 176, the vibrator 178, and the power supply 180
are external to the on-chip system 102.

The on-ship system 102 may also include various bus con-
trollers (not shown). For example, a first example of a may be
responsive to signals in the bus interface that communica-
tively couples the CPU 110 to components of a multimedia
subsystem, including the video encoder 134. It should be
understood that any number of similarly configured bus con-
trollers can be arranged to monitor a bus interface arranged in
the on-chip system 102. Alternatively, a single bus controller
could be configured with inputs arranged to monitor two or
more bus interfaces that communicate signals between CPU
110 and various subsystems of the PCD 100 as may be
desired.

In a particular aspect, one or more of the method steps
described herein may be enabled via a combination of data
and processor instructions stored in the memory 112. These
instructions may be executed by one or more cores in the
multicore CPU 110 in order to perform the methods described
herein. Further, the multicore CPU 100, one or more of the
cores 222, 224, 230, the memory 112, the PI module 101, or
acombination thereof may serve as a means for executing one
or more of the method steps described herein in order enable
DCVS aware interprocessor communications.

FIG. 2A is a graph illustrating an exemplary theoretical
load over a period of time for a processing component that
may be implemented in the PCD illustrated in FIG. 1. In FIG.
2A, the vertical axis represents the load on the processing
component. While FIG. 2A (as well as subsequent graph 3A)
shows two boundaries for the load level —80% on the lower
range and 90% on the upper range—these boundaries are for
demonstrative purposes and any number of, or amount of,
boundary levels may be available for the processing compo-
nent. The horizontal axis represents time. While FIG. 2A
shows four equal time intervals T, -T,, the load may be deter-
mined or measured over any number of equal or unequal time
intervals as desired.

The load on the processing component illustrated by the
curve in FIG. 2A represents the active workload on the pro-
cessing component, and may be measured or determined in
any desired manner. As illustrated in the example of FIG. 2A,
the active workload of the processing component remains
within the boundaries of 80% on the lower range and 90% on
the upper range. Assuming that the processing component
being measured in FIG. 2A implements a DCVS algorithm or
logic, the measurement of the active workload within these
ranges may cause the DCVS algorithm or logic to maintain
the frequency of the processing unit at a steady state.
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FIG. 2B is a graph illustrating an exemplary frequency of
the processing component under the theoretical load illus-
trated in FIG. 2A. In the FIG. 2B graph, the vertical axis
represents the operating frequency levels at which the pro-
cessing component may be held, such as per instructions from
a DCVS algorithm or logic. Notably, the FIG. 2B graph (as
well as subsequent FIG. 3B graph) depicts two operating
frequency levels available for a given processing component
(800 MHz and 1.4 GHz); however, these operating frequency
levels are for demonstrative purposes and it is envisioned that
any number of operating frequency levels may be available
for a given processing component, and that the specific fre-
quencies may vary from those illustrated as desired. The
horizontal axis represents time.

As illustrated in FIG. 2B, the processing component is
being held by the DCVS at 800 MHz, the lower frequency of
the processing component. As would be understood by one of
ordinary skill in the art, operating the processing component
at the lower frequency results in lower power consumption.
Thus, as a result of the active workload for the processing
component being determined/measured as staying under the
upper boundary of 90% in FIG. 2A, the DCVS algorithm or
logic of the processing unit holds the frequency of the pro-
cessing component in a steady state at the lower frequency in
FIG. 2B reducing the power consumption.

However, the efforts of the DCVS algorithm or logic for a
processing component to reduce power consumption can be
undermined by communications from other processing com-
ponents, as illustrated in FIGS. 3A-3B. FIG. 3A is a graph
illustrating another exemplary theoretical load over a period
of'time for a processing component that may be implemented
in the PCD embodiment illustrated in FIG. 1 In FIG. 3A, the
vertical axis again represents the load on the processing com-
ponent. While FIG. 3A shows two boundaries for the load
level—80% on the lower range and 90% on the upper range—
these boundaries are for demonstrative purposes and any
number of, or amount of, boundary levels may be available
for the processing component. The horizontal axis represents
time. While FIG. 3A shows four equal time intervals T,-T,,
the load may be determined or measured over any number of
equal or unequal time intervals as desired.

The load on the processing component illustrated by the
curve in FIG. 3A again represents the active workload on the
processing component, and may be measured or determined
in any desired manner. Different from the previous graph of
FIG. 2A, in FIG. 3A, the active workload of the processing
component rises above the upper boundary or 90% in the time
interval T,. Increases in the active workload of processing
components may be caused by interprocessor communica-
tions from another processing unit—for example a message,
interrupt, remote procedure call, shared memory call, etc.
from another processing component, such as a different core
222,224, 230 in the CPU 100. Such interprocessor commu-
nications received while the receiving processing component
is already in an active state can result in one or more addi-
tional threads on the receiving processing component,
increasing the active workload on the processing component.
As illustrated in FIG. 3A, the active workload of the process-
ing component may then return back below the 90% upper
range for the time intervals T; and T,.

As a result of the measurement of the active workload in
time interval T, above the upper range of 90% as illustrated in
FIG. 3A, the DCVS algorithm or logic of the processing
component may cause the processing component to operate at
a higher frequency for one or more time intervals as illus-
trated in FIG. 3B. F1G. 3B is a graph illustrating an exemplary
frequency of the processing component under the theoretical
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load illustrated in FIG. 3A. In the FIG. 3B graph, the vertical
axis again represents the operating frequency levels at which
the processing component may be held, such as per instruc-
tions from a DCVS algorithm or logic. Notably, the FIG. 3B
graph depicts two operating frequency levels available for a
given processing component (800 MHz and 1.4 GHz); how-
ever, these operating frequency levels are for demonstrative
purposes and it is envisioned that any number of operating
frequency levels may be available for a given processing
component, and that the specific frequencies may vary from
those illustrated as desired. The horizontal axis represents
time.

As illustrated in FIG. 3B, the processing component is
being held by the DCVS at 800 MHz, the lower frequency of
the processing component for the first two time intervals T,
and T,. However, as a result of the measurement or determi-
nation of an active workload above 90% (or whatever desired
threshold) in T, the frequency of the processing component is
increased to 1.4 GHz for at least time interval T;. This
increase of the processing component at the higher frequency
can result in a significant increase in the power consumption
of'the processing component. Thus, as a result of an interpro-
cessor communication from another processing component,
the active workload for the processing component illustrated
in FIGS. 3A-3B may be determined/measured as exceeding
the upper boundary of 90% in FIG. 3A, resulting in an
increase in the frequency of the processing unit in FIG. 3B,
increasing the power consumption.

FIG. 4 is ablock diagram showing an exemplary system for
supporting DCVS aware interprocessor communications in
order to better manage power consumption by processing
components. In the embodiment illustrated in FIG. 4, data is
received by a first processing component, illustrated in FIG. 4
as a first core 410, which could be one of the cores 222, 224,
230 of the multicore CPU 110 illustrated in FIG. 1. The first
core 410 could be any type of processor or core 222, 224,230
in a PCD 100, including an application processor/core, a
modem processor/core, a WiFi processor/core, a video
decoder processor/core, an audio decoder processor/core, a
GPU/graphics core, etc. In the implementation illustrated in
FIG. 4, the first core 410 includes a processor, CPU 412, with
packet sending logic 414 and at least one buffer 418 in com-
munication with the CPU 412. As shown in FIG. 4, the buffer
418 may be a buffer 418 A internal to the first core 410 (or to
the CPU 412). Additionally, or alternatively, the buffer 418
may also be one or more external buffers 418B, including
external buffers 481B that are shared by first core 410 and
additional processing components.

The configuration of the features of the first core 410 in
FIG. 4 is illustrative and non-limiting. For example, although
shown as being contained on the CPU 412, in some embodi-
ments the packet sending logic 414 may be a separate hard-
ware or software component, module, or logic external to, but
in communication with, the CPU 412 and/or the first core 410.
Similarly, although the CPU 412 itself is illustrated as being
contained within the first core 410, in some implementations
the CPU 412 could be external to, but in communication with,
the first core 410. Additionally, in some implementations the
CPU 412 itself may comprise the first core 410.

The exemplary system of FIG. 4 also includes a second
processing component in communication with the first pro-
cessing component, illustrated as a second core 420 in com-
munication with the first core 410. The second core 420 may
also be any type of processor or core 222, 224, 230 in a PCD
100, including an application processor/core, a modem pro-
cessor/core, a WiFi processor/core, a video decoder proces-
sor/core, an audio decoder processor/core, a GPU/graphics
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core, etc. In the implementation illustrated in FIG. 4, the
second core 420 includes a processor, CPU 422. Although the
CPU 422 is illustrated as being contained within the second
core 420, in some implementations the CPU 422 could be
external to, but in communication with, the second core 420.
Additionally, the in some implementations the CPU 422 itself
may comprise the second core 420.

As illustrated in FIG. 4, the CPU 422 is in communication
with a DCVS module 424. The DCVS module 424 performs
dynamic clock and voltage scaling for the second core 420
and/or processor CPU 422 of the second core 420. The DCVS
module 424 may be implemented in hardware, software, or
firmware as desired. Additionally, although illustrated as an
external to the CPU 422, the DCVS module 424 may instead
be part ofthe CPU 422. Similarly, the DCVS module 424 may
also be located external to, but in communication with the
second core 420. Regardless of how implemented, the DCVS
module 424 performs at least some form of power consump-
tion regulation for the second core 420 and/or CPU 422 in
response to the active workload, such as for example the
operating frequency adjustments discussed above with
respect to FIGS. 2A-2B and 3A-3B.

The illustrated DCVS module 424 includes a counter 426
for measuring the active workload of the second core 420
and/or CPU 422 in a manner that may be read by, or commu-
nicated to, the packet sending logic 414 of the first core 410.
In some implementations, the counter 426 may be a compo-
nent or part of the DCVS module 424. In such implementa-
tions, the counter 426 may, for example, be logic within the
DCVS module 424 that counts busy clock cycles the second
core 420 and/or CPU 422 spent executing non-idle threads in
the current sampling period/time interval. In other implemen-
tations, the counter 426 may be a hardware, software, or
firmware module, counter, or component separate from the
DCVS module 424 that reads or receives information from
the DCVS module 424.

The second core 420 may also include packet reception
logic 428 as illustrated in FIG. 4 for controlling data or data
packets received by the second core 420 from other cores such
as first core 410. The packet reception logic 428 and/or CPU
424 of the second core 420 may be in communication with
one or more external buffers 418B as illustrated in FIG. 4.
External buffer 418B may also be in communication with
other processing components such as first core 410 and/or the
CPU 412 of the first core 410. Packet reception logic 428 may
be implemented in hardware, software, or firmware. Addi-
tionally, the packet reception logic 428 may be external from,
or may be included within, the CPU 422 of the second core
420 in various embodiments.

In operation, the system 400 of FIG. 4 allows for DCVS
aware interprocessor communications, such as between first
core 410 and second core 420. As illustrated in FIG. 4, the first
core 410, a WiFi core for example, receives one or more
streams of data, each stream comprised of data packets. In
some implementations the CPU 412 of the first core 410 may
determine that one or more of the received data packets needs
to be sent to one or more additional processing components
such as the second core 420 which in this example is a core for
operating applications. In other implementations, another
element or component may make the determination that one
or more of the received data packets needs to be sent to one or
more additional processing components. Such other elements
or component may be part of the first core 410, such as the
packet sending logic 414. Alternatively, such other elements
may be external to the first core 410, such as an element or
component making the determination prior to the data being
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sent to the first core 410 and communicating the determina-
tion to the first core 410 with the data.

Rather than simply forwarding the data packets to the other
processing components such as second core 420, the first core
410 first checks the active workload of any destination pro-
cessing components, including second core 420. In the exem-
plary system of FIG. 4, the packet sending logic 414 of first
core 410 receives information from the counter 426 of the
second core 420 in order to “read” or determine the active
workload of the second core 420 and/or the CPU 422 of the
second core 420. The active workload can be read or received
in any manner desired, and may be in any desired form such
as a “busy percentage” of the second core 420/CPU 422 or a
number busy clock cycles the second core 420/CPU 422 spent
executing non-idle threads in the current sampling period.

In some implementations, the packet sending logic 414
may communicate directly with the DCVS module 424 and/
or counter 426 of the second core 420 in order to “read” the
active workload of the second core 420 and/or the CPU 422.
In other implementations, the CPU 412 of the first core 410
may communicate with the DCVS module 424 and/or
counter 426 of the second core 420 in order to “read” the
active workload, in which case the CPU 412 passes the infor-
mation about the active workload of the second core 420/CPU
422 to the packet sending logic 414.

The packet sending logic 414 then uses the received infor-
mation about the active workload of the second core 420/CPU
422 to determine whether to immediately send the data pac-
ket(s) to the second core 420/CPU 422, or whether to delay
sending the data packets to the second core 420/CPU 422,
such as by temporarily storing the data packet(s) in buffer
418A or 418B.

In one exemplary embodiment the received information
about the active workload of the second core 420/CPU 422
may be a busy percentage for the second core 420/CPU 422.
In that implementation, the packet sending logic 414 may
decide whether immediately sending the data packet(s) to the
second core 420/CPU 422 will result in an increase in the
active workload of the second core 420/CPU 422. This deci-
sion may also include determining whether the increased
active workload will cause the DCVS module 424 of the
second core 420 to increase the power consumption of the
second core 420/CPU 422, such as by raising the operating
frequency of the second core 420/CPU 422.

In one implementation, the packet sending logic 414 may
perform this determination by evaluating whether or not the
active workload of the second core 420/CPU 422 will
increase above a pre-determined threshold, such as the 90%
threshold discussed above for FIGS. 2A-2B and 3A-3B
requiring the DCVS module to increase the operating fre-
quency of the second core 420/CPU 422. This evaluation
could be made by the packet sending logic 414 comparing the
received active workload percentage of the destination pro-
cessing component to a threshold value, by the packet send-
ing logic 414 receiving the active workload percentage of the
destination processing component and estimating the
increase in workload that would be caused by sending the data
immediately, or by any other desired method.

If immediately sending the data packet(s) to the second
core 420/CPU 422 would result in a busy percentage increase
above the 90% threshold, the packet sending logic 414 may
determine to not immediately send the data packet(s) to the
second core 420/CPU 422, and instead store the data pac-
ket(s) in one or more buffer 418A, 418B. The packet sending
logic 414 may then continue to receive information about the
active workload of the second core 420/CPU 422 until the
packet sending logic 414 determines that sending the data
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packet(s) would not increase the active workload of the sec-
ond core 420/CPU 422, or until the packet sending logic 414
determines that the data packet(s) must be sent to the second
core 420/CPU 422 in order to avoid the data packet(s) timing
out. In such circumstances, the packet sending logic 414
could cause the data packet(s) to be sent from the buffer
418A, 418B to the second core 420/CPU 422. Alternatively,
the packet sending logic 414 could cause the second core
420/CPU 422 to retrieve the data packet(s) from a shared
buffer 418B, such as through a shared memory call to the
second core 420/CPU 422.

The determination by the packet sending logic 414 of
whether to immediately send the data packet(s) to the second
core 420/CPU 422 may be also based in part on other con-
siderations, such as operational parameters. Exemplary
operational parameters that may be evaluated when making
the determination include: the importance of the information
contained within the data packet(s); the nature of the destina-
tion processing component to which the data is being sent (i.e.
an active application or GPU); quality of service (“QoS”); the
availability of buffers; the power “cost” of buffering the data;
etc. The evaluation or determination of these various opera-
tional parameters may be made by an algorithm or series of
algorithms, giving weight to any desired parameter or opti-
mization outcome. Alternatively, the evaluations or determi-
nations may be made by any other desired means, such as a
look-up table.

One illustration of consideration of such factors may be if
the data multimedia data received over a 3G connection to the
PCD 100. The importance to QoS of being able to provide
such information to the PCD 100 user quickly and without
interruption may cause the packet sending logic 414 to deter-
mine to provide the information to another processing com-
ponent, such as a GPU or video decoder immediately, even if
the destination processing component(s) are busy and send-
ing the information would result in the destination processing
component(s) being operated at a high frequency.

On the other hand, if the data being received by the first
core 410 is a file download such as an update to various
applications, the lower immediate importance of such infor-
mation, and minimal impact of such information on QoS,
may cause the packet sending logic 414 to determine that the
information should be buffered if there is any chance that
sending the data to a destination processing component
would result in operation in a higher power consumption
mode.

By way of another example, the packet sending logic 414
may consider whether due to the architecture of the PCD 100,
the current operating conditions of the PCD 100, and/or other
reasons, the power cost of buffering the data received by the
first core 410 is high and/or higher than the power cost of
increasing the level of operation of the destination processing
component. In such circumstances, the packet sending logic
414 may determine to immediately send the datato the second
processing component, even if the active workload for that
second processing unit would otherwise warrant buffering the
data packet(s). Alternatively, in such circumstances, the
determination process of the packet sending logic 414 may be
tuned, such as by increasing the active workload threshold
value for when data will be sent to the second/destination
processing component, in order to minimize the buffering
cost while still trying to obtain power savings by deferring
data packet delivery to the second/destination processing
component when possible.

For ease ofunderstanding, FIG. 4 illustrates a first core 410
that receives data a second core 420 that is a destination
processing component for an interprocessor communication.
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Itis envisioned that at times the second core 420 (or additional
processing components not shown) may receive data, in
which case the first core 410 may be the destination process-
ing component for the interprocessor communication, with
corresponding components of the second core 420 commu-
nicating with the first core 410 and making the determination
of whether to immediately send data or data packet(s) to the
first core 410 or whether to buffer the data packet(s), such as
in buffer 418B.

Similarly, it is to be understood that while FIG. 4 illustrates
only one destination processing component (second core
420), in some embodiments there may be multiple destination
processing components to which the first core 410 in FIG. 4
may send some, or all, of the received data packets. In such
embodiments, the packet sending logic 414 of the first core
410 may make the determination(s) described above indepen-
dently for each destination processing component based on
any of the above-listed factors or considerations, or based on
any additional factors or considerations desired. It is not
necessary in such embodiments that the packet sending logic
414 apply the same thresholds, evaluate the same factors or
considerations, and/or weight similar factors or consider-
ations the same when making the determination for each
destination processing component. Thus, the packet sending
logic 414 may determine that a specified set of data packets
should immediately be sent to one destination processing
component, but that the same data packets should be buffered
rather than sent immediately to a second destination process-
ing component, even if the first destination processing com-
ponent is currently operating at a higher active workload than
the second destination processing component.

FIG. 5 is a block diagram showing another exemplary
system for supporting DCVS aware interprocessor commu-
nications in order to manage power consumption by process-
ing components. The system 500 illustrated in FIG. 5 includes
a source processing component that is receiving data (first
core 510) and two destination processing components (sec-
ond core 520 and Nth core 530). Although two destination
processing components are illustrated for ease of understand-
ing, the system 500 may include any number of destination
processing components.

The embodiment of the system 500 illustrated in FIG. 5 is
similar to the system 400 of F1G. 4, except that the system 500
of FIG. 5 implements a separate and/or or centralized packet
sending logic module 514 in communication with each of the
first core 510, second core 520, and Nth core 530. The packet
sending logic module 514 in of system 500 is operable to
provide DCVS aware interprocessor communications
between first core 510, second core 520, and Nth core 530 in
a manner similar to that described above for FIG. 4.

Each of the first core 510, second core 520, and Nth core
530 could be any type of processor or core 222, 224, 230 (see
FIG. 1) in a PCD 100, including an application processor/
core, amodem processor/core, a WiFi processor/core, a video
decoder processor/core, an audio decoder processor/core, a
GPU/graphics core, etc. In the implementation illustrated in
FIG. 5, the first core 510 includes a processor, CPU 512, and
at least one buffer 518 in communication with the CPU 512.
As shown in FIG. 5, the buffer 518 may be a buffer 518A
internal to the first core 510 (or to the CPU 512). Additionally,
or alternatively, the buffer 518 may also be one or more
external bufters 518B, including external buffers 581B that
are shared by first core 510 and additional processing com-
ponents, such as second core 520 and/or Nth core 530.

The configuration of the features of the first core 510 in
FIG. 5 is illustrative and non-limiting. For example, although
the CPU 512 itself is illustrated as being contained within the
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first core 510, in some implementations the CPU 512 could be
external to, but in communication with, the first core 510.
Additionally, in some implementations the CPU 512 itself
may comprise the first core 510.

The exemplary system of FIG. 5 also includes a second and
third processing component in communication with the first
processing component, illustrated as a second core 520 and
Nth core 530 in communication with the first core 510. In the
implementation illustrated in FIG. 5, the second core 520
includes a processor, CPU 522 and the Nth core 530 includes
a processor, CPU 532. Although the CPUs 522 and 532 is
illustrated as being contained within the second core 520 and
Nth core 530 respectively, in some implementations the
CPUs 522 and 532 could be external to, but in communication
with, the second core 520 and Nth core 530 respectively.
Additionally, the in some implementations the CPUs 522 and
532 themselves may comprise the second core 520 and Nth
core 530 respectively. In yet other implementations the sec-
ond core 520 and the Nth core 530 may share one CPU 522
that performs processing for both cores 520 and 530.

As illustrated in FIG. 5, the CPU 522 of the second core
520 is in communication with a DCVS module 524. Simi-
larly, the CPU 532 of the Nth core 530 is in communication
with a DCVS module 534 for the Nth core 530. The DCVS
modules 524 and 534 perform dynamic clock and voltage
scaling for the second core 520/CPU 522 and Nth core 530/
CPU 532 respectively. The DCVS modules 524 and 534 may
be implemented in hardware, software, or firmware as
desired. Additionally, although illustrated as an external to the
CPUs 522 and 532, the DCVS modules 524 and 534 may
instead be part of the CPUs 522 and 532 respectively. Simi-
larly, the DCVS modules 524 and 534 may also be located
external to, but in communication with the second core 520
and Nth core 530 respectively. Regardless of how imple-
mented, the DCVS modules 524 and 534 perform some form
of' power consumption regulation of their respective cores 520
or 530 and/or CPUs 522 or 532 in response to the active
workload, such as for example the operating frequency
adjustments discussed above with respect to FIGS. 2A-2B
and 3A-3B.

The illustrated DCVS module 524 for the second core 520
includes a counter 526 for measuring or recording the active
workload of the second core 520 and/or CPU 522 in a manner
that may be read by, or communicated to, the packet sending
logic module 514. In some implementations, the counter 526
may be acomponent or part of the DCVS module 524. In such
implementations, the counter 526 may, for example, be logic
within the DCV'S module 524 that counts busy clock cycles
the second core 520 and/or CPU 522 spent executing non-idle
threads in the current sampling period/time interval.

In contrast, the Nth core 530 contains a monitor 536 exter-
nal to the DCVS module 534 for the Nth core 530 for mea-
suring, recording, or receiving information about the active
workload of the Nth core 530 and/or CPU 532. The monitor
similarly 536 stores the workload information in a manner
that may be read by, or communicated to, the packet sending
logic module 514. The monitor 536 may be a hardware,
software, or firmware module or component in communica-
tion with the DCVS module 534, and may be located within
the Nth core 530 or CPU 532, or external to, but in commu-
nication with the Nth core 530 or CPU 532. Both the monitor
536 of the Nth core 530 and the counter 526 of the second core
520 serve to provide information to, or allow information to
be read by, the packet sending logic module 514, including in
a manner similar that described above with respect to FIG. 4.

The second core 520 and Nth core 530 may also include
packet reception logic 528 and 538 respectively, as illustrated
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in FIG. 5 for controlling data or data packets received by the
second core 520 and Nth core 530 from other processing
components such as first core 510. The packet reception logic
528 and/or CPU 524 of the second core 520 may be in com-
munication with one or more external buffers 518B as illus-
trated in FIG. 5. Similarly, the packet reception logic 538
and/or CPU 534 of the Nth core 530 may also be in commu-
nication with one or more external buffers 518B. External
buffer 518B may also be in communication with the packet
sending logic module 514 and other processing components
such as first core 510 and/or the CPU 512 of'the first core 510.
The packet reception logics 528 and 538 may be implemented
in hardware, software, or firmware. Additionally, the packet
reception logics 528 and 538 may be external from, or may be
included within, the CPU 522 of the second core 520 and the
CPU 532 of'the Nth core 530, respectively, in various embodi-
ments.

In operation, the packet sending logic module 514 of the
system 500 of FIG. 4 allows for DCVS aware interprocessor
communications, such as between first core 510 and second
core 520 and/or Nth core 530. As illustrated in FIG. 5, the first
core 510, a WiFi core for example, receives one or more
streams of data, each stream comprised of data packets. In
some implementations, the CPU 512 of the first core 510 may
determine that one or more of the received data packets needs
to be sent to one or more additional processing components
such as the second core 520 and/or Nth core 530.

In other implementations, another element or component
may make the determination that one or more of the received
data packets needs to be sent to one or more additional pro-
cessing components. Such other elements or component may
be part of the first core 510. Such other elements or compo-
nents may also be external to the first core 410, such as the
packet sending logic module 514, or an element or compo-
nent making the determination prior to the data being sent to
the first core 510 and communicating the determination to the
first core 510 with the data.

Rather than simply allowing the first core 510 to forward
the data packets to the other processing components such as
second core 520 or Nth core 530, the packet sending logic
module 514 first checks the active workload of any such
destination processing components, similar to the system 400
discussed above in FIG. 4. In the exemplary system of FIG. 5,
the packet sending logic module 514 receives information
from the counter 526 of the second core 520 and the monitor
536 of the Nth core 530 in order to “read” the active workload
of the respective cores 520 and 530 and/or their respective
CPUs 522 and 532. As discussed above, the active workload
can be read in any manner desired, such as a “busy percent-
age” of the second core 520/CPU 522 and/or Nth core 530/
CPU 522, or as a number busy clock cycles the second core
520/CPU 522 and/or Nth core 530/CPU 532 spent executing
non-idle threads in the current sampling period.

The packet sending logic module 514 may communicate
directly with the DCVS module 524 and/or counter 526 of the
second core 520 in order to “read” the active workload of the
second core 520 and/or the CPU 522. Similarly, the packet
sending logic module 514 may communicate directly with the
monitor 536 of the Nth core 530 in order to “read” the active
workload of the Nth core 530 and/or the CPU 532. The packet
sending logic module 514 then uses the received information
about the active workload of the second core 420/CPU 422
and/or Nth core 530/CPU 532 to determine whether to imme-
diately send the data packet(s) to either of the cores 520 or 530
(or their respective CPUs 522 or 532), or whether to delay
sending the data packets to one or more of the second core
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520/CPU 522 or Nth core 530/CPU 532, such as by tempo-
rarily storing the data packet(s) in buffer 518B.

In one exemplary embodiment the received information
about the active workload of the second core 520/CPU 522
may be a busy percentage for the second core 520/CPU 522.
In that implementation, the packet sending logic module 514
may determine whether immediately sending the data pac-
ket(s) to the second core 520/CPU 522 will result in an
increase in the active workload of the second core 520/CPU
522. This determination may also include determining
whether the increased active workload will cause the DCVS
module 524 of the second core 520 to increase the power
consumption of the second core 520/CPU 522, such as by
raising the operating frequency of the second core 520/CPU
522.

In one implementation, the packet sending logic module
may perform this determination by evaluating whether or not
the active workload of the second core 520/CPU 522 will
increase above a pre-determined threshold, such as the 90%
threshold discussed above for FIGS. 2A-2B and 3A-3B
requiring the DCVS module 524 to increase the power con-
sumption (such as by increasing the operating frequency) of
the second core 520/CPU 522. This evaluation could be made
by the packet sending logic module 514 comparing the
received active workload percentage of the destination pro-
cessing component to a threshold value, by the packet send-
ing logic module 514 receiving the active workload percent-
age of the destination processing component and estimating
the increase in workload that would be caused by sending the
data immediately, or by any other desired method.

In the above example, the received information about the
active workload of the Nth core 530/CPU 532 may also be a
busy percentage for the Nth core 530/CPU 532, and the
packet sending logic module 514 may make a similar deter-
mination about the active workload of the Nth core 530/CPU
532. However, it is not necessary that the type of information
received the active workload of the Nth core 530/CPU 532 be
the same type of information received about the active work-
load of the second core 520/CPU 522. For example, the
packet sending logic module 514 may obtain or receive busy
percentage information about the workload of the second
core 520/CPU 522, while obtaining or receiving a different
type of information from the monitor 536 of the Nth core 530
indicating the active workload of the Nth core 530/CPU 532.

Regardless of the type of information received, the packet
sending logic module 514 will determine for each of the
second core 520/CPU 522 and Nth core 530/CPU 532
whether immediately sending the data packet(s) would result
in an increase in the power consumption of the second core
520/CPU 522 and/or Nth core 530/CPU 532, such as by an
increase in the operating frequency of either core 520/530
and/or CPU 522/532. In that event, the packet sending logic
module 514 may determine to not immediately send data
packet(s) to one or more of the second core 420/CPU 422 and
Nth core 530/CPU 532, and instead store the data packet(s) in
one or more buffer 418B.

The packet sending logic module 514 may then continue to
receive information about the active workload of the second
core 520/CPU 522 and/or Nth core 530/CPU 532 until the
packet sending logic module 514 determines that sending the
data packet(s) would not increase the active workload of the
respective cores 520/530 or CPUs 522/532, or until the packet
sending logic module 514 determines that the data packet(s)
must be sent in order to avoid the data packet(s) timing out. In
such circumstances, the packet sending logic module 514
could cause the data packet(s) to be sent from the buffer 418B
to the appropriate destination core 520/530 or CPU 522/532.
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Alternatively, the packet sending logic module 514 could
cause the second core 520/CPU 522 and/or Nth core 530/
CPU 532 to retrieve the data packet(s) from a shared buffer
418B, such as through a shared memory call to the second
core 520/CPU 522 or Nth core 530/CPU 532.

As discussed above, the determination by the packet send-
ing logic module 514 whether to immediately send the data
packet(s) to either of the second core 520/CPU 522 or Nth
core 530/CPU 532 may be also based in part on other con-
siderations, such as operational parameters. Exemplary
operational parameters that may be evaluated when making
the determination include: the importance of the information
contained within the data packet(s); the nature of the destina-
tion processing component to which the data is being sent (i.e.
an active application or GPU); quality of service (“QoS”); the
availability of buffers; the power “cost” of buffering the data;
etc. The evaluations or determinations by the packet sending
logic module 514 may be made by an algorithm or series of
algorithms, giving weight to any desired factor, consider-
ation, or optimization outcome; or may be made by any other
desired means, such as a look-up table.

Similarly, it is to be understood that while FIG. 5 illustrates
two destination processing components (second core 520 and
Nth core 530), in some embodiments there may be additional
destination processing components to which the first core
5410 in FIG. 5 may send some, or all, of the received data
packets. As discussed, the packet sending logic module 514
may make the above-described determination(s) and/or
evaluation(s) independently for each destination processing
component based on any of the above-listed factors or con-
siderations, or based on any additional factors or consider-
ations desired. It is not necessary that the packet sending logic
module 514 apply the same thresholds, evaluate the same
factors or considerations, and/or weight similar factors or
considerations the same when making the determination for
each destination processing component. Thus, the packet
sending logic module 514 may determine that a specified set
of'data packets should immediately be sent to the second core
520/CPU 522, but that the same data packets should be buft-
ered rather than sent immediately to the Nth core 530/CPU
532 (or some other processing component), even if the second
core 520/CPU 522 is currently operating at a higher active
workload than the Nth core 530/CPU 532.

Additionally, determinations by the packet sending logic
412 of FIG. 4 and/or packet sending logic module 514 of FIG.
5 may also be adaptively changed to reflect new conditions,
allowing for improved and/or more precise optimization and
power consumption reduction from interprocessor commu-
nications. Although described in terms of communications
between processor components in a PCD 100 herein for ease
of'understanding, the principles of systems 400 and 500, and
method 600 (FIG. 6a-6B) are equally applicable to other
types of processor components, such as processor compo-
nents, processors, cores, etc. modem subsystem in any com-
puter system.

FIG. 6A is a flowchart describing an exemplary embodi-
ment of a method for providing method for providing
dynamic voltage and voltage scaling (DCVS) aware interpro-
cessor communications, such as in processor components
used in or with a PCD. The method 600 begins with block 610
where at least one data packet is received at a processing
component or core. As discussed above, the processing com-
ponent may be a core, CPU, DSP, or other processing element
within the PCD 100, and the processing component will be
referred to in the discussion of the method 600 as a “core” for
simplicity. Additionally, the first core may receive a plurality
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of data packets, with each data packet a part of one or more
data streams received by the first core.

At block 620 a determination is made whether one or more
data packets may be needed by another processing compo-
nent or core. For discussion purposes, such other processing
components will be referred to in the discussion of method
600 as “other core(s)” or “destination core(s).” As discussed,
the determination of whether one or more data packets is
needed by other core(s) may be made by the first core, or a
component of the first core such as the CPU 412 or packet
sending logic 414 of the first core 410 in the exemplary
system 400 illustrated in FIG. 4.

In other implementations, the determination of block 620
may be made by an element or component external to the first
core, such as a CPU that is external to the first core, or the
packet sending logic module 514 of the exemplary system
500 illustrated in FIG. 5. In yet other implementations, block
620 may occur prior to the first core receiving the data pac-
ket(s), such as for example another component determining
that other core(s) will also need some or all of the data pac-
ket(s) and communicating that information to the first core
along with the data packets, or prior to or after the first core
begins receiving the data packets.

At block 630, a determination is made whether the other
core(s) to which the data packet(s) will be sent are “busy.”
This determination may be made by the first core or compo-
nents within the first core, such as by the packet sending logic
414 of the first core 410 in the exemplary system 400 illus-
trated in FIG. 4. Alternatively, the determination at block 630
may be made by components or elements external to the first
core, such as the packet sending logic module 514 of the
exemplary system 500 illustrated in FIG. 5. As discussed
above for the systems 400 and 500, such a determination at
block 630 may be a determination whether immediately send-
ing the data packet(s) would result in an increase in the power
consumption at the destination core(s), such as by an increase
in the operating frequency of any destination core(s).

The determination at block 630 is based on information
received from, or obtained/read from, the destination core(s),
such as the active workload of the destination core(s) as
discussed above. In the exemplary system of FIG. 5 for
example, the packet sending logic module 514 receives infor-
mation from the counter 526 of the second core 520 and the
monitor 536 of the Nth core 530 in order to “read” the active
workload of the respective cores 520 and 530 and/or their
respective CPUs 522 and 532. The active workload can be
read in any manner desired, such as a “busy percentage” of the
second core 520/CPU 522 and/or Nth core 530/CPU 522, or
as a number busy clock cycles the second core 520/CPU 522
and/or Nth core 530/CPU 532 spent executing non-idle
threads in the current sampling period. The evaluations or
determinations at block 630 may be made by an algorithm or
series of algorithms, or may be made by any other desired
means, such as a look-up table.

Ifthe determination at block 630 is that the any destination
core is not “busy” the data packet(s) may be immediately sent
from the first core to that destination core at block 640, and the
method 600 returns. The sending of the data packet(s) to the
destination core(s) at block 640 may be accomplished by any
method or means desired.

Ifthe determination at block 630 is that the any destination
core is “busy” the method 600 at block 650 determines
whether the data packet(s) may be deferred. This determina-
tion may be based at least in part on various considerations
and/or factor, including: the importance of the information
contained within the data packet(s); the destination core(s) to
which the data is being sent; quality of service (“QoS”); the
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availability of buffers; the power “cost” of buffering the data;
whether the data will time out if not sent to the destination
core(s); etc. The preceding are illustrative factors, param-
eters, or considerations that may be evaluated when making
the determination of block 650.

The determination at block 650 may be made by any hard-
ware, software, or firmware component, and in any manner
desired, including for example the manner of determining
discussed above with respect to the packet sending logic 414
of system 400 illustrated in FIG. 4 and/or the packet sending
logic module 514 of system 500 illustrated in FIG. 5. The
determination in block 650 may be made by an algorithm or
series of algorithms, giving weight to any desired factor,
consideration, or optimization outcome; or may be made by
any other desired means, such as a look-up table. As would be
understood by one of ordinary skill in the art, in some
embodiments, block 630 and block 640 may not be separate
determinations. Instead, the determinations of whether the
destination core is busy (block 630) and whether the packet
can be deferred (650) may be made in one determination/step
rather than the two separate determinations/steps illustrated
in FIG. 6A.

If the determination at block 650 is that the data packet(s)
cannot be deferred for any destination core, the data packet(s)
may be immediately sent from the first core to that destination
core at block 640, and the method 600 returns. Again, the
sending of the data packet(s) to the destination core(s) at
block 640 may be accomplished by any method or means
desired.

If'the determination at block 650 is that the sending the data
packet(s) to any destination core may be deferred, the data
packet(s) for that destination core are buffered in block 660.
The buffer may be any type of memory buffer, including for
example the buffers 418A and 418B illustrated in FIG. 4 or
the buffers 518 A and 518B illustrated in FI1G. 5. Similarly, the
buffer to which the deferred data packet(s) are sent may be a
buffer internal to the first core, or may be external to the first
core, including external buffers that are shared by the first
core and one or more destination core.

After the buffering of the data packet(s) in block 660, the
method 600 continues back to block 630 to begin checking
whether the destination core(s) to which the buffered data
packet(s) are to be sent is still “busy.” Thus, the method 600
may check whether one or more destination core(s) are busy
multiple times before the conditions warrant that the buffered
data packet(s) is sent to the destination core. Such conditions
may include, for example a determination a particular desti-
nation core is no longer “busy,” a determination that the
buffered data packet(s) are about to time out such that they
must be sent, a determination that the power cost of continu-
ing to buffer outweighs the power cost of sending the data to
the destination core(s), etc.

Once the determination is made that the buffered data
packet(s) are to be sent to one or more destination core(s), the
data packet(s) may be sent to the appropriate destination
core(s) at block 640 in any manner desired. For instance,
using the system 500 above as an example, the packet sending
logic module 514 could cause the data packet(s) to be sent
from buffer 418B to the appropriate destination core 520/530
or CPU 522/532. Alternatively, the packet sending logic mod-
ule 514 could cause the second core 520/CPU 522 and/or Nth
core 530/CPU 532 to retrieve the data packet(s) from a shared
buffer 418B, such as through a shared memory call to the
second core 520/CPU 522 or Nth core 530/CPU 532.

FIG. 6A describes only one exemplary embodiment of a
method for providing method for providing voltage scaling
(DCVS) aware interprocessor communications, such as in

10

15

20

25

30

35

40

45

50

55

60

65

22

processor components used in or with a PCD. In other
embodiments, additional blocks or steps may be added to the
method 600. Similarly, in some embodiments various blocks
or steps shown in FIG. 6 A may be combined or omitted, such
as for example combining blocks 630 and 650 into one deter-
mining block/step rather than the two separate blocks/steps
illustrated in FIG. 6A as discussed above. Such variations of
the method 600 are within the scope of this disclosure.

Additionally, certain steps in the processes or process flows
described in this specification naturally precede others for the
invention to function as described. However, the invention is
not limited to the order of the steps described if such order or
sequence does not alter the functionality of the invention,
such as for example performing block 620 before block 610
as discussed above. Moreover, it is recognized that some steps
may performed before, after, or in parallel (substantially
simultaneously) with other steps without departing from the
scope of the invention. In some instances, certain steps may
be omitted or not performed without departing from the
invention. Further, words such as “thereafter”, “then”, “next”,
“subsequently”, etc. are not intended to limit the order of the
steps. These words are simply used to guide the reader
through the description of the exemplary method.

The various operations and/or methods described above
may be performed by various hardware and/or software com-
ponent(s) and/or module(s), and such component(s) and/or
module(s) may provide the means to perform such operations
and/or methods. Generally, where there are methods illus-
trated in Figures having corresponding counterpart means-
plus-function Figures, the operation blocks correspond to
means-plus-function blocks with similar numbering. For
example, blocks 610-660 illustrated in FIG. 6 A correspond to
means-plus-function blocks 610'-660" illustrated in FIG. 6B.

Additionally, one of ordinary skill in programming is able
to write computer code or identify appropriate hardware and/
or circuits to implement the disclosed invention without dif-
ficulty based on the flow charts and associated description in
this specification, for example. Therefore, disclosure of a
particular set of program code instructions or detailed hard-
ware devices is not considered necessary for an adequate
understanding of how to make and use the invention. The
inventive functionality of the claimed processor-enabled pro-
cesses is explained in more detail in the above description and
in conjunction with the drawings, which may illustrate vari-
ous process flows.

In one or more exemplary aspects as indicated above, the
functions described may be implemented in hardware, soft-
ware, firmware, or any combination thereof. If implemented
in software, the functions may be stored on or transmitted as
one or more instructions or code on a computer-readable
medium, such as a non-transitory processor-readable
medium. Computer-readable media include both data storage
media and communication media including any medium that
facilitates transfer of a program from one location to another.

A storage media may be any available media that may be
accessed by a computer or a processor. By way of example,
and not limitation, such computer-readable media may com-
prise RAM, ROM, EEPROM, CD-ROM or other optical disk
storage, magnetic disk storage or other magnetic storage
devices, or any other medium that may be used to carry or
store desired program code in the form of instructions or data
structures and that may be accessed by a computer. Disk and
disc, as used herein, includes compact disc (“CD”), laser disc,
optical disc, digital versatile disc (“DVD”), floppy disk and
blu-ray disc where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combina-
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tions of the above should also be included within the scope of
non-transitory computer-readable media.

Although selected aspects have been illustrated and
described in detail, it will be understood that various substi-
tutions and alterations may be made herein without departing
from the present invention, as defined by the following
claims.

What is claimed is:

1. A method for interprocessor communication in a por-
table computing device (PCD), the method comprising:

receiving at least one data packet at a first processing

component;
receiving at the first processing component workload infor-
mation about a second processing component operating
under dynamic clock and voltage scaling (DCVS);

determining, at the first processing component, whether
the at least one data packet is needed by the second
processing component;

in response to the determination, determining based at least

in part on the received workload information whether to
send the at least one data packet from the first processing
component to the second processing component or to a
buffer;

receiving at the first processing component workload infor-

mation about a third processing component operating
under DCVS; and

determining based at least in part on the received workload

information about the third processing component
whether to send the at least one data packet from the first
processing component to the third processing compo-
nent or to a buffer.

2. The method of claim 1, wherein determining based at
least in part on the received workload information whether to
send the at least one data packet from the first processing
component to a buffer or to the second processing component
further comprises:

determining whether sending the at least one data packet to

the second processing component would cause the sec-
ond processing component to increase the operating fre-
quency of the second processing component.

3. The method of claim 1, wherein determining based at
least in part on the received workload information whether to
send the at least one data packet from the first processing
component to the second processing component or to a buffer
further comprises:

determining whether an active workload of the second

processing component exceeds a threshold value.

4. The method of claim 1, wherein determining based at
least in part on the received workload information whether to
send the at least one data packet from the first processing
component to the second processing component or to a buffer
is further based at least in part on an operational parameter.

5. The method of claim 4, wherein the operational param-
eter comprises at least one of the power consumption of
buffering the at least one data packet, a quality of service
(QoS) level, and whether the at least one data packet will time
out.

6. The method of claim 1, wherein the determining based at
least in part on the received workload information whether to
send the at least one data packet from the first processing
component to the second processing component or to a buffer
is performed by a packet sending logic module external to the
first processing component.

7. A system for interprocessor communication in a portable
computing device (PCD), the system comprising:

a first processing core circuit, the first processing compo-

nent configured to receive at least one data packet;
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a second processing core circuit in communication with the
first processing core circuit, the second processing core
circuit configured to operate under dynamic clock and
voltage scaling (DCVS) and the first processing core
circuit determines whether the at least one data packet is
needed by the second processing core circuit;

a buffer in communication with the first processing core
circuit component and the second processing core cir-
cuit;

a counter in communication with the second processing
core circuit, the counter configured to obtain workload
information about the second processing core circuit;

a packet sending logic in communication with the first
processing core circuit and the counter, wherein the
packet sending logic is configured to receive the work-
load information from the counter and in response to the
determination, determine based at least in part on the
received workload information whether to cause the at
least one data packet to be sent to the second processing
core circuit or to the buffer;

a third processing core circuit in communication with the
first processing core circuit and the bufter, the third
processing core circuit configured to operate under
dynamic clock and voltage scaling (DCVS); and

a monitor in communication with the third processing core
circuit and the packet sending logic, the monitor config-
ured to obtain workload information about the third
processing core circuit wherein the packet sending logic
is configured to receive the workload information about
the third processing core circuit from the monitor and
determine based at least in part on the received workload
information whether to cause the at least one data packet
to be sent to the third processing core circuit or to the
buffer.

8. The system of claim 7, wherein:

the second processing core circuit further comprises a
DCVS module configured to provide dynamic clock and
voltage scaling for the second processing core circuit,
and

the counter is part of the DCVS module.

9. The system of claim 7, wherein:

the workload information about the second processing core
circuit further comprises an active workload of the sec-
ond processing core circuit, and

the packet sending logic is configured to determine
whether to send the at least one data packet from the first
processing core circuit to the second processing core
circuit or to a buffer by determining whether an active
workload of the second processing core circuit exceeds
a threshold value.

10. The system of claim 7, wherein the packet sending
logic is further configured to determine whether to send the at
least one data packet from the first processing core circuit to
the second processing core circuit or to a buffer based at least
in part on an operational parameter.

11. The system of claim 10, wherein the operational param-
eter comprises at least one of the power consumption of
buffering the at least one data packet, a quality of service
(QoS) level, and whether the atleast one data packet will time
out.

12. The system of claim 7, wherein the packet sending
logic is part of the first processing component.

13. The system of claim 7, wherein the buffer is external to
the first processing core circuit.

14. The system of claim 7, wherein the packet sending
logic comprises a packet sending module external to the first
processing core circuit.
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15. A computer program product comprising a non-transi-
tory computer usable medium having a computer readable
program code embodied therein, said computer readable pro-
gram code adapted to be executed to implement a method for
interprocessor communication in a portable computing
device (PCD), the method comprising:

receiving at least one data packet at a first processing

component;
receiving at the first processing component workload infor-
mation about a second processing component operating
under dynamic clock and voltage scaling (DCVS);

determining whether the at least one data packet is needed
by the second processing component;
in response to the determination, determining based at least
in part on the received workload information whether to
send the at least one data packet from the first processing
component to the second processing component or to a
buffer;
receiving at the first processing component workload infor-
mation about a third processing component operating
under dynamic clock and voltage scaling (DCVS); and

determining based at least in part on the received workload
information about the third processing component
whether to send the at least one data packet from the first
processing component to the third processing compo-
nent or to a buffer.

16. The computer program product of claim 15, wherein
determining based at least in part on the received workload
information whether to send the at least one data packet from
the first processing component to the second processing com-
ponent or to a buffer further comprises:

determining whether sending the at least one data packet to

the second processing component would cause the
DCVS of the second processing component to increase
the operating frequency of the second processing com-
ponent.

17. The computer program product of claim 15, wherein
determining based at least in part on the received workload
information whether to send the at least one data packet from
the first processing component to the second processing com-
ponent or to a buffer further comprises:

determining whether an active workload of the second

processing component exceeds a threshold value.

18. The computer program product of claim 15, wherein
determining based at least in part on the received workload
information whether to send the at least one data packet from
the first processing component to the second processing com-
ponent or to a buffer is further based at least in part on an
operational parameter.

19. The computer program product of claim 18, wherein
the operational parameter comprises at least one of the power
consumption of buffering the at least one data packet, a qual-
ity of service (QoS) level, and whether the at least one data
packet will time out.

20. The computer program product of claim 15, wherein
the determining based at least in part on the received work-
load information is performed by a packet sending logic
module external to the first processing component.

21. A system for interprocessor communication in a por-
table computing device (PCD), the system comprising:
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means for receiving at least one data packet at a first pro-

cessing component;

means for receiving at the first processing component

workload information about a second processing com-
ponent operating under dynamic clock and voltage scal-
ing (DCVS);

means for determining whether the at least one data packet

is needed by the second processing component;
means for, in response to the determination, determining
based at least in part on the received workload informa-
tion whether to send the at least one data packet from the
first processing component to the second processing
component or to a buffer;
means for receiving at the first processing component
workload information about a third processing compo-
nent operating under dynamic clock and voltage scaling
(DCVS); and

means for determining based at least in part on the received
workload information about the third processing com-
ponent whether to send the at least one data packet from
the first processing component to the third processing
component or to a buffer.

22. The system of claim 21, wherein the means for deter-
mining based at least in part on the received workload infor-
mation whether to send the at least one data packet from the
first processing component to the second processing compo-
nent or to a buffer further comprises:

means for determining whether sending the at least one

data packet to the second processing component would
cause the DCVS of the second processing component to
increase the operating frequency of the second process-
ing component.

23. The system of claim 21, wherein the means for deter-
mining based at least in part on the received workload infor-
mation whether to send the at least one data packet from the
first processing component to the second processing compo-
nent or to a buffer further comprises:

means for determining whether an active workload of the

second processing component exceeds a threshold val-
ues.

24. The system of claim 21, wherein the means for deter-
mining based at least in part on the received workload infor-
mation whether to send the at least one data packet from the
first processing component to the second processing compo-
nent or to a buffer further comprises:

means for determining whether to send the at least one data

packet from the first processing component to the sec-
ond processing component or to a buffer based at least in
part on an operational parameter.

25. The system of claim 24, wherein the operational param-
eter comprises at least one of the power consumption of
buffering the at least one data packet, a quality of service
(QoS) level, and whether the atleast one data packet will time
out.

26. The system of claim 21, wherein the means for deter-
mining based at least in part on the received workload infor-
mation is external to the first processing component.
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